Transistor Average ratng: 4,7/5 5832 votes

Transistors are devices that control the movement of electrons, and consequently, electricity. They work something like a water faucet -- not only do they start and stop the flow of a current, but they also control the amount of the current. With electricity, transistors can both switch or amplify electronic signals, letting you control current moving through a circuit board with precision.

  1. What Do Transistor Do
  2. Transistor Basics

The transistors made at Bell Labs were initially made from the element germanium. Scientists there knew pure germanium was a good insulator. But adding impurities (a process called doping) changed the germanium into a weak conductor, or semiconductor. Semiconductors are materials that have properties in-between insulators and conductors, allowing electrical conductivity in varying degrees.


What Do Transistor Do

In 1947, Shockley was director of transistor research at Bell Telephone Labs. Brattain was an authority on solid-state physics as well as expert on nature of atomic structure of solids and Bardeen was an electrical engineer and physicist. Within a year, Bardeen and Brittain used the element germanium to create an amplifying circuit, also called. The Transistor is a three terminal solid state device which is formed by connecting two diodes back to back. Hence it has got two PN junctions. Three terminals are drawn out of the three semiconductor materials present in it. This type of connection offers two types of transistors. Transistor definition: 1. A small electrical device containing a semiconductor, used in televisions, radios, etc. Transistor, three-terminal, solid-state electronic device used for amplification and switching. It is the solid-state analog to the triode electron tube electron tube, device consisting of a sealed enclosure in which electrons flow between electrodes separated either by a vacuum (in a vacuum tube) or by an ionized gas at low pressure (in a gas tube).


Total war: warhammer - the grim and the grave download free torrent. The timing of the invention of transistors was no accident. To work properly, transistors require pure semiconductor materials. It just so happened that right after World War II, improvements in germanium refinement, as well as advances in doping, made germanium suitable for semiconductor applications.

Depending on the element used for doping, the resulting germanium layer was either negative type (N-type), or positive type (P-type). In an N-type layer, the doping element added electrons to the germanium, making it easier for electrons to surge out. Conversely, in a P-type layer, specific doping elements caused the germanium to lose electrons, thus, electrons from adjacent materials flowed towards it.

Place the N-type and P-type adjacent to each other and you create a P-N diode. This diode allows an electrical current to flow, but in only one direction, a useful property in the construction of electronic circuits.

Full-fledged transistors were the next step. To create transistors, engineers layered doped germanium to make two layers back to back, in a configuration of either P-N-P or N-P-N. The point of contact was called a junction, thus the name junction transistor.

With an electrical current applied to the center layer (called the base), electrons will move from the N-type side to the P-type side. The initial small trickle acts as a switch that allows much larger current to flow. In an electric circuit, this means that transistors are acting as both a switch and an amplifier.

These days, in place of germanium, commercial electronics use silicon-based semiconductors, which are more reliable and more affordable than germanium-based transistors. But once the technology caught on, germanium transistors were in widespread use for more than 20 years.

  • Development of transistors
  • Transistor principles
Please select which sections you would like to print:

Our editors will review what you’ve submitted and determine whether to revise the article.

Join Britannica's Publishing Partner Program and our community of experts to gain a global audience for your work!
Articles from Britannica Encyclopedias for elementary and high school students.
Michael Riordan
Professor of Physics, Institute for Particle Physics, University of California at Santa Cruz, and Professor of History and Philosophy of Science, Stanford University, Stanford, Calif. Author of Crystal..

Transistor, semiconductor device for amplifying, controlling, and generating electrical signals. Transistors are the active components of integrated circuits, or “microchips,” which often contain billions of these minuscule devices etched into their shiny surfaces. Deeply embedded in almost everything electronic, transistors have become the nerve cells of the Information Age.

Inventors and Inventions
Our earliest human ancestors invented the wheel, but who invented the ball bearing that reduces rotational friction? Let the wheels in your head turn while testing your knowledge of inventors and their inventions in this quiz.

There are typically three electrical leads in a transistor, called the emitter, the collector, and the base—or, in modern switching applications, the source, the drain, and the gate. An electrical signal applied to the base (or gate) influences the semiconductor material’s ability to conduct electrical current, which flows between the emitter (or source) and collector (or drain) in most applications. A voltage source such as a battery drives the current, while the rate of current flow through the transistor at any given moment is governed by an input signal at the gate—much as a faucet valve is used to regulate the flow of water through a garden hose.

The first commercial applications for transistors were for hearing aids and “pocket” radios during the 1950s. With their small size and low power consumption, transistors were desirable substitutes for the vacuum tubes (known as “valves” in Great Britain) then used to amplify weak electrical signals and produce audible sounds. Transistors also began to replace vacuum tubes in the oscillator circuits used to generate radio signals, especially after specialized structures were developed to handle the higher frequencies and power levels involved. Low-frequency, high-power applications, such as power-supply inverters that convert alternating current (AC) into direct current (DC), have also been transistorized. Some power transistors can now handle currents of hundreds of amperes at electric potentials over a thousand volts.


By far the most common application of transistors today is for computer memory chips—including solid-state multimedia storage devices for electronic games, cameras, and MP3 players—and microprocessors, where millions of components are embedded in a single integrated circuit. Here the voltage applied to the gate electrode, generally a few volts or less, determines whether current can flow from the transistor’s source to its drain. In this case the transistor operates as a switch: if a current flows, the circuit involved is on, and if not, it is off. These two distinct states, the only possibilities in such a circuit, correspond respectively to the binary 1s and 0s employed in digital computers. Similar applications of transistors occur in the complex switching circuits used throughout modern telecommunications systems. The potential switching speeds of these transistors now are hundreds of gigahertz, or more than 100 billion on-and-off cycles per second.

Get exclusive access to content from our 1768 First Edition with your subscription. Subscribe today

Development of transistors


The transistor was invented in 1947–48 by three American physicists, John Bardeen, Walter H. Brattain, and William B. Shockley, at the American Telephone and Telegraph Company’sBell Laboratories. The transistor proved to be a viable alternative to the electron tube and, by the late 1950s, supplanted the latter in many applications. Gremlins inc download. Its small size, low heat generation, high reliability, and low power consumption made possible a breakthrough in the miniaturization of complex circuitry. During the 1960s and ’70s, transistors were incorporated into integrated circuits, in which a multitude of components (e.g., diodes, resistors, and capacitors) are formed on a single “chip” of semiconductor material.

Motivation and early radar research

Transistor Basics

Electron tubes are bulky and fragile, and they consume large amounts of power to heat their cathode filaments and generate streams of electrons; also, they often burn out after several thousand hours of operation. Electromechanical switches, or relays, are slow and can become stuck in the on or off position. For applications requiring thousands of tubes or switches, such as the nationwide telephone systems developing around the world in the 1940s and the first electronic digital computers, this meant constant vigilance was needed to minimize the inevitable breakdowns.

An alternative was found in semiconductors, materials such as silicon or germanium whose electrical conductivity lies midway between that of insulators such as glass and conductors such as aluminum. The conductive properties of semiconductors can be controlled by “doping” them with select impurities, and a few visionaries had seen the potential of such devices for telecommunications and computers. However, it was military funding for radar development in the 1940s that opened the door to their realization. The “superheterodyne” electronic circuits used to detect radar waves required a dioderectifier—a device that allows current to flow in just one direction—that could operate successfully at ultrahigh frequencies over one gigahertz. Electron tubes just did not suffice, and solid-state diodes based on existing copper-oxide semiconductors were also much too slow for this purpose.

Crystal rectifiers based on silicon and germanium came to the rescue. In these devices a tungstenwire was jabbed into the surface of the semiconductor material, which was doped with tiny amounts of impurities, such as boron or phosphorus. The impurity atoms assumed positions in the material’s crystal lattice, displacing silicon (or germanium) atoms and thereby generating tiny populations of charge carriers (such as electrons) capable of conducting usable electrical current. Depending on the nature of the charge carriers and the applied voltage, a current could flow from the wire into the surface or vice-versa, but not in both directions. Thus, these devices served as the much-needed rectifiers operating at the gigahertz frequencies required for detecting rebounding microwave radiation in military radar systems. By the end of World War II, millions of crystal rectifiers were being produced annually by such American manufacturers as Sylvania and Western Electric.

Quick Facts
key people
related topics
Comments are closed.